physicsandmathstutor.com

Mark Scheme

			1	
1(i) (a)	31 75 87 42 43 70 56 61 95 28 (may be shown vertically or as separate swaps)	M1 A1		28 moved to the end of the list, no other values moved Correct list at end of first pass (cao)
	9 comparisons and 8 swaps	B1		9 and 8 (written, not tallies) (cao) - if not specified, assume the larger value is comparisons
	The smallest (final) mark, 28	B1	[4]	(their) 28 or smallest/least or final/last/end
				If sorted into increasing order: 28 31 75 42 43 70 56 61 87 95
				M0 A0, then 9 and 6 = B1 and (their) 95 or largest/greatest/biggest or final/last/end = B1
(b)	75 87 42 43 70 56 61 95 31 28	B1	[1]	Correct list at end of second pass
				If sorted into increasing order and already penalised in (i)(a) then condone here: 28 31 42 43 70 56 61 75 87 95
(c)	7 more passes	B1	[1]	7 (cao)
(::)	31 28 75 87 42 43 70 56 61 95	M1		31 28 75 or 31 28 75
(ii)	31 28 75 87 42 43 70 56 61 95 75 31 28 87 42 43 70 56 61 95	MI A1		Correct list, in full, at end of second pass
		111		Lists must be easily found, not picked out from working,
				if the candidate has labelled passes use them as labelled
	1 comparison and 0 swaps in first pass	B1		1 and 0 (written)(cao) may appear next to list
	2 comparisons and 2 swaps in second pass	B1	[4]	2 and 2 (written)(cao) may appear next to list
				If sorted into increasing order: 28 31 75
				M0, A0, then 1 and $1 = B1$; 1 and $0 = B1$
(iii)	Bubble sort does not terminate early, since it takes	B1		Identifying that bubble sort <u>does not terminate early</u>
	9 passes to get 95 to the front of the list, so it uses 9+8++1 or 45 comparisons			(Just stating $9+8++1$ or $45 = B0$) Allow 'the largest number is at the end of the list' or '95
	so it uses 5+6++1 of 45 comparisons			at end'
	Shuttle sort takes fewer than 1+2++9	B1	[2]	A good explanation of why shuttle sort requires fewer
	comparisons, since, for example, in the fourth pass		[_]	comparisons in this particular case
	42 will be compared with 28, 31 and 75 but not with 87.			Do not accept 'because the list is not in reverse order'
(iv)	$20 \times \left(\frac{50}{10}\right)^2$	M1		Correct method
	= 500 seconds			
	- 500 seconds	A1	[2]	500 seconds or 8 mins 20 sec (without wrong working)

physicsandmathstutor.com

4736

Mark Scheme

		D 1	[1]	
2(i)	Cannot have an odd number of odd nodes	B1	[1]	Sum of orders must be even
	Odd vertices come in pairs			Sum of orders is 9 so 4.5 arcs (which is impossible)
(ii)	eg Many other correct possibilities	M1 A1	[2]	A diagram showing a graph with four vertices that is <u>not connected</u> and <u>not simple</u> Vertices have orders 1, 2, 3, 4
(iii)	The vertex of order 4 needs to connect to four	M1		Specifically identifying that the problem is with the vertex
()	other vertices, but there are only three other			of order 4
	vertices available, so one vertex must be joined			
	twice or the vertex of order 4 is connected to	A1	[2]	Explaining why the graph cannot be simple (either reason)
	itself. Hence the graph cannot be simple			and stating that simple cannot be achieved
				Ignore any claims about whether or not the graph is
<i>(</i> •)		D 1	543	connected
(iv) (a)	Each vertex of order 4 connects to each of the others, since graph is simple. Hence the other two	B1	[1]	Any reasonable explanation, but <u>not just a diagram</u> of a specific case
(a)	vertices must have order (at least) 3.			'the other two must be odd but they can't because
	But Eulerian, so all must have order 4.			Eulerian' is not enough
	······································			Note: the graph has five vertices
(b)	Graph is Eulerian - so each vertex order is even; simple - so no vertex has order more than 4; and connected - so no vertex has order 0. Hence <u>each</u> vertex has order either 2 or 4. But cannot have 3 or 4 vertices of order 4. So must have $0, 1, 2$ or 5 vertices of order 4.	B1 M1 A1	[3]	Explaining why there are only four such graphs Or list all the possibilities (eg 22222 42222 44222 44444) Any two correct (note: must be simply connected and Eulerian) All four correct and <u>no extras</u> (apart from topologically
				equivalent variations)

physicsandmathstutor.com

Mark Scheme

		-		
3(i)	$y \ge x$ $x \ge 0$ $y \le 7 - \frac{2}{3}x$	M1 M1 A1	[3]	Boundaries $y = x$ and $x = 0$ in any form (may be shown as an equality or an inequality with inequality sign wrong) Boundary $2x + 3y = 21$ in any form <u>All</u> inequalities correct (and any extras do not affect the feasible region)
(ii)	$(0, 7) \Rightarrow 42$ $(4.2, 4.2) \Rightarrow 29.4$ or $(\frac{21}{5}, \frac{21}{5}) \Rightarrow \frac{147}{5}$ At optimum, $x = 0$ and $y = 7$ $P_1 = 42$	M1 A1 A1	[3]	Substantially correct attempt at testing vertices (at least one vertex apart from (0, 0)) or using a line of constant profit (may be implied) Accept (0, 7) identified (cao) 42 (stated) (cao) NOT deduced from earlier working, unless identified
(iii)	(4.2, 4.2) $P_k = 4.2(k+6)$ or $4.2k+25.2$	B1 B1	[2]	cao cao
(iv)	Compare $kx + 6y$ with boundary $2x + 3y$ or algebraically, $4.2(k + 6)$ with 42 or $-\frac{k}{6}$ with $-\frac{2}{3}$ $\Rightarrow k \le 4$ $k \le 4$ or $k < 4$ implies M1, A1	M1 A1	[2]	Algebraically or using line, <u>or implied</u> (allow = here) Accept $k < 4$ No need to say that $k > 0$, but candidates may also say $k > 0$ or $k \ge 0$ Note: k is continuous, so answers such as ' $k = 1, 2, 3, 4$ ' or ' $k = 1, 2, 3$ ', with no other working, would get M1, A0

physicsandmathstutor.com

4736

Mark Scheme

		ī		
4(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		1.7 shown as a temporary label at G
	1 0 2 0.5 5 0.6 5 0.8 A B D F	A1		All temporary labels correct with no extras (may not have written temporary label when it becomes permanent)
	4 0.7 7 1.25	B1		All permanent labels correct (cao)
	0.7 C G 1.7 1.25	B1		Order of labelling correct (cao)
	Route: $A - B - D - F - G$	B1	[5]	This route written down (not reversed) (cao)
(ii)	Route Inspection problem	B1	[1]	Accept Chinese postman Allow 'postman', 'postman route', but not just 'inspection'
(iii)	CD(CBD) = 0.3, DG(DFG) = 0.65,	M1		Any one of these seen (explicitly or as part of a calculation)
	CG(CBDFG) = 0.95	A1		All three of these seen (explicitly or as parts of calculations)
	CD (CBD) and $FG = 0.75or CD (CBD) and EG (EFG) = 1.05$	M1		Or either of these with <i>AB</i> to give 1.25 or 1.55 respectively
	Length = 3.7 + 0.5 + 0.3 + 0.75 = 5.25 km	M1 A1	[5]	Adding their 0.75 to 3.7 or their 0.75 to 3.7 + 0.5 + 0.3 (cao) units not needed 5.25 implies M1, M1 A1, irrespective of working
(iv)	B-D - F - G - C - B	B1		cao
	1.9 km	B1	[2]	1.9 (cao) irrespective of method
(v)	[TREE] Vertices added in order <i>BDCF</i> or <i>BDFC</i>	B1 B1		Correct tree drawn A valid order of adding vertices or a valid order of adding
	Arcs added in order <i>BD</i> , <i>BC</i> , <i>DF</i> or <i>BD</i> , <i>DF</i> , <i>BC</i> Two shortest arcs from <i>G</i> total $0.45 + 0.65 = 1.1$			arcs
	Two shortest arcs from 6 total $0.45 + 0.65 = 1.1$ Lower bound = $0.5 + 1.1 = 1.6$ km	M1 A1		0.45 and 0.65, or total 1.1 (may be implied from 1.6) 1.6 (cao) units not needed 1.6 implies M1, A1
			[4]	
		1	L 'J	

physicsandmathstutor.com

Mark Scheme

5(i)	$600x + 800y + 500 \ z \le 5000$ $\Rightarrow 6x + 8y + 5z \le 50$	M1 A1		Correct inequality, allow < for M mark only Correct fully simplified form (cao)
	$120x + 80y + 120z \le 800$ $\implies 3x + 2y + 3z \le 20$	M1 A1	[4]	Correct inequality, allow < for M mark only Correct fully simplified form (cao)
	May use slack variables, provided they also specify slack variables non-negative eg $6x + 8y + 5z + t = 50$, $t \ge 0 = M1$, A1			If slack variable form used and fully simplified but without specifying that slack variables are non-negative, SC M1 A0 for each
(ii)	P x y z s t u RHS 1 -100 -40 -120 0 0 0 0 0 12 20 15 1 0 0 60 0 6 8 5 0 1 0 50	M1 A1		Objective row correct <u>and</u> three slack variables used Three constraint rows correct (ft (i), if reasonable) Accept variations in order of rows and columns
	0 3 2 3 0 0 1 20			Condone <i>P</i> column missing here
(ii)	$60 \div 15 = 4, 50 \div 5 = 10, 20 \div 3 = 6\frac{2}{3}$ Pivot on the 15 in the <i>z</i> column New row 2 = row 2 ÷ 15 New row 1 = row 1 + 120 × new row 2 New row 3 = row 3 - 5 × new row 2 New row 4 = row 4 - 3 × new row 2 $\frac{P \times y \times z \times t \times u \times x}{1 - 4 \times 120 \times 0 \times 8 \times 0 \times 0 \times 480}$ $\frac{0 \times 4}{5} \times 1\frac{1}{3} \times 1\frac{1}{15} \times 0 \times 0 \times 480}$ $\frac{0 \times 4}{5} \times 1\frac{1}{3} \times 1\frac{1}{15} \times 0 \times 0 \times 480}$ $\frac{0 \times 4}{5} \times 1\frac{1}{3} \times 1\frac{1}{15} \times 0 \times 188$	B1 M1 A1 M1 A1		Correct pivot choice from <u>their z column</u> Correct method for <u>their</u> pivot row seen (or implied from <u>correct row</u> in tableau if no attempt seen) Correct method for their <u>three</u> other rows seen as a <u>formula</u> Iterate to get a tableau with exactly <u>four basis columns</u> and <u>non-negative entries in final column</u> , in which the value of the <u>objective has not decreased</u> Values in final column correct (follow through)
	$4 \div \frac{4}{5} = 5, 30 \div 2 = 15, 8 \div \frac{3}{5} = 13\frac{1}{3}$ Pivot on the $\frac{4}{5}$ in the <i>x</i> column	B1		Correct pivot choice for their second iteration
	New row 2 = row 2 ÷ $\frac{4}{5}$ New row 1 = row 1 + 4 × new row 2	M1		Correct method for <u>their</u> pivot row seen (or implied from <u>correct row</u> in tableau if no attempt seen) Correct method for their <u>three</u> other rows seen as a
	New row $3 = row 3 - 2 \times new row 2$ New row $4 = row 4 - \frac{3}{5} \times new row 2$	A1		formula
	$\begin{array}{ c c c c c c c c c c c }\hline P & x & y & z & s & t & u & \text{RHS} \\\hline \hline 1 & 0 & 126\frac{2}{3} & 5 & 8\frac{1}{3} & 0 & 0 & 500 \\\hline 0 & 1 & 1\frac{2}{3} & 1\frac{1}{4} & \frac{1}{12} & 0 & 0 & 5 \\\hline \end{array}$	M1		Iterate to get a tableau with exactly <u>four basis columns</u> and <u>non-negative entries in final column</u> , in which the value of the <u>objective has not decreased</u>
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		Values in final column correct (follow through)

physicsandmathstutor.com

Mark Scheme

	Make 5 litres of <i>fruit salad</i> only	B1	[13]	Interpretation of <u>their</u> final (non-negative) <u>x</u> , <u>y</u> and <u>z</u> , in context (need 'only' or equivalent; '5 <i>fruit salads</i> ' is not enough) x = 5, y = 0, z = 0 gives B0
(iii)				
	$60 \div 12 = 5, 50 \div 6 = 8\frac{1}{3}, 20 \div 3 = 6\frac{2}{3}$ Pivot on the 12 in the <i>x</i> column	B1		Correct pivot choice from their x column
	New row $2 = row 2 \div 12$	M1		Correct method for <u>their</u> pivot row (seen or implied from correct row in tableau)
	New row $1 = row 1 + 100 \times new row 2$	A1		Correct method for their <u>objective</u> row seen as a formula
	Showing that there are no negative entries in objective row Saying that optimum has been achieved ('no negatives in top row')	M1 A1	[5]	Showing that there are no negative entries in objective row Or achieving a final tableau, in one iteration, with exactly four basis columns and non-negative entries in final column, in which the value of the objective has not decreased